

Tencent腾讯

Field-aware Probabilistic Embedding Neural Network for CTR Prediction

Weiwen Liu¹, Ruiming Tang², Jiajin Li¹, Jinkai Yu², Huifeng Guo³, Xiuqiang He⁴, Shengyu Zhang^{1,5} ¹The Chinese University of Hong Kong, ²Huawei Noah's Ark Lab, ³Harbin Institute of Technology (Shenzhen), ⁴Tencent Data Service Center, ⁵Tencent Quantum Lab

Motivation

- The Click-Through Rate (CTR) prediction is a vital task for web search, recommender systems, online advertising, etc.
- Most of the existing deep models are biased to high-order interactions and fail to exploit the simple yet effective loworder feature interactions. Moreover, they did not consider the field information.
- Field-aware Factorization Machines (FFM) have exhibited great effectiveness in CTR prediction by considering field information. However, FFM suffers from the overfitting problem in many practical scenarios [1].
- We aim at designing a CTR prediction model that incorporates both low-order and high-order feature interactions, while preventing overfitting.

Contribution

- We propose a Field-award Probabilistic Embedding method (FPE) to estimate the probability distribution of the field-aware embedding instead of using the single point estimation. Various uncertainties for different feature interactions are are captured.
- The field information is incorporated into a unified end-to-end deep learning framework, FPENN, which combines the low-order and high-order feature interactions.
- We test our FPENN together with the state-of-the-art models (i.e., LR, FM, FFM, DeepFM) on two benchmark datasets to confirm the effectiveness of FPENN.

		Model					
	Our proposed Field-aware Probabil						
	(FPENN) model consists of	(FPENN) model consists of three compon					
	Quadratic component and	Deep compon					
	• FPE component:						
	 Embeds the sparse inp 	out feature veo					
	reduce the dimension	•					
7	 A distribution is learned 	ed for each ele					
	enhance the robustne	ess and effectiv					
	 Training: The probabil 	ity distributior					
	reparametrization tric	k [2].					
	 Testing: The mean and 	d variance info					
	proposed UCB-strateg	y or TS-strateg					
	Quadratic component:						
	 Captures the second- 	order feature					
	by computing the inr	ner products of					
	vectors.	-					
	Deep component:						
	 A neural network is 	Output Layer					
	deployed to learn	Deep Component					
	high-order feature						
	interactions, on the						
	basis of feature						
	embeddings						
	generated by FPE	FPE Component					
	component.						
	Overall architecture:	Reparameteriz					
	 The final output of 	$\xi \sim \mathcal{N}($					
	FPENN is a						
	weighted sum of						
	the Quadratic						
	component and the	Input Feature Vector					
	Deep component.						
	References:						

[1] Juan, Y, et al. "Field-aware factorization machines for CTR prediction." *RecSys*, 2016. [2] Ruiz, F. R., AUEB, M. T. R, and Blei, D. "The generalized reparameterization gradient." NIPS, 2016.

Experiments

Generalization ability:

• The performance of FPENN drops very little with training steps.

35	7	9 11 13 Training	15 17 Step	19 21	23 25
=10 ⁻⁷)	-FI	FM (l₂=0) FM (l₂=10 ⁻	⁶) —	FFM (l₂ FFM (l₂	=10 ⁻⁸) =10 ⁻⁵)
13	57	9 11 13 Training	8 15 17 g Step	19 21	. 23 25
	— F	FM (l₂=0)	_	FFM (I₂	=10 ⁻⁸)
=10 ⁻⁷)	— F	FM (l ₂ =10 ⁻	⁻⁶) —	FFM (I ₂	=10 ⁻⁵)

FPENN

• FPENN performs better than other state-of-the-art models.

Ava	azu	Criteo		
4UC(%)	Logloss	AUC(%)	Logloss	
76.53	0.3883	78.00	0.5631	
77.97	0.3802	79.09	0.5500	
78.25	0.3782	79.77	0.5440	
78.36	0.3777	79.91	0.5423	
78.61	0.3764	79.97	0.5417	