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Motivation
• The	Click-Through	Rate	(CTR)	prediction	is	
a	vital	task	for	web	search,	recommender	
systems,	online	advertising,	etc.

• Most	of	the	existing	deep	models	are	
biased	to	high-order	interactions	and	fail	
to	exploit	the	simple	yet	effective	low-
order	feature	interactions.	Moreover,	they	
did	not	consider	the	field	information.

• Field-aware	Factorization	Machines	(FFM)	
have	exhibited	great	effectiveness	in	CTR	
prediction	by	considering	field	
information.	However,	FFM	suffers	from	
the	overfitting	problem	in	many	practical	
scenarios	[1].

• We	aim	at	designing	a	CTR	prediction	
model	that	incorporates	both	low-order	
and	high-order	feature	interactions,	while	
preventing	overfitting.

Contribution
• We	propose	a	Field-award	Probabilistic	
Embedding	method	(FPE)	to	estimate	the	
probability	distribution	of	the	field-aware	
embedding	instead	of	using	the	single	
point	estimation.	Various	uncertainties	for	
different	feature	interactions	are	are	
captured.

• The	field	information	is	incorporated	into	
a	unified	end-to-end	deep	learning	
framework,	FPENN,	which	combines	the	
low-order	and	high-order	feature	
interactions.

• We	test	our	FPENN	together	with	the	
state-of-the-art	models	(i.e.,	LR,	FM,	FFM,	
DeepFM)	on	two	benchmark	datasets	to	
confirm	the	effectiveness	of	FPENN.

Model
• Our	proposed	Field-aware	Probabilistic	Embedding	Neural	Network	

(FPENN)	model	consists	of	three	components,	i.e.,	FPE	component,	
Quadratic	component	and	Deep	component.

• FPE	component:
• Embeds	the	sparse	input	feature	vector	to	dense	latent	vectors	to	

reduce	the	dimension.
• A	distribution	is	learned	for	each	element	in	the	latent	vectors	to	

enhance	the	robustness	and	effectiveness	of	the	prediction.
• Training:	The	probability	distribution	is	learned	using	the	

reparametrization trick	[2].
• Testing:	The	mean	and	variance	information	are	combined	by	the	

proposed	UCB-strategy	or	TS-strategy.
• Quadratic	component:

• Captures	the	second-order	feature	interactions	
by	computing	the	inner	products	of	latent	
vectors.

• Deep	component:
• A neural	network	is	

deployed	to	learn	
high-order	feature	
interactions,	on	the	
basis	of	feature	
embeddings
generated	by	FPE	
component.

• Overall	architecture:
• The	final	output	of	

FPENN	is	a	
weighted	sum	of	
the	Quadratic	
component	and	the	
Deep	component.
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Experiments
• Generalization	ability:

• The	performance	of	FPENN	drops	very	
little	with	training	steps.

• Accuracy
• FPENN	performs	better	than	other	

state-of-the-art	models.
Avazu Criteo

AUC(%) Logloss AUC(%) Logloss

LR 76.53 0.3883 78.00 0.5631

FM 77.97 0.3802 79.09 0.5500

FFM 78.25 0.3782 79.77 0.5440

DeepFM 78.36 0.3777 79.91 0.5423

FPENN 78.61 0.3764 79.97 0.5417

References:
[1]	Juan,	Y,	et	al.	"Field-aware	factorization	machines	for	CTR	prediction." RecSys,	2016.
[2]	Ruiz,	F.	R.,	AUEB,	M.	T.	R,	and	Blei,	D.	"The	generalized	reparameterization
gradient." NIPS,	2016.


