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Web Page Recommendation

Given a search query, a web page

recommendation algorithm recommends

a list of related web pages.

• In the online scenario, the learning

agent

• receives user feedback and makes

predictions according to previous user

behaviors.

• aims at maintaining a high

Click-Through Rate (CTR) over a

long period of time
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Exploitation vs Exploration

• Online recommendation involves a fundamental choice:

Exploitation: exploiting the currently confirmed attractive yet

suboptimal items

Exploration: exploring uncertain but potentially interesting items

which may produce large benefits later

• The best long-term strategy may involve short-term sacrifices

• We need to gather enough information to make the best overall

decisions
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Multi-armed Bandit

• At each round t, the learning agent selects one arm it , and receives

a reward Rt(it).

• Cumulative regret after n rounds is

regret = nµ∗ − E[
n∑

t=1

Rt(it)].

• The objective is to minimize the cumulative regret.
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Upper Confidence Bound (UCB) Algorithm

• Estimate the mean reward Q̂t(a) of Qt(a), and the confidence radius

Ût(a) for each arm a, such that Q(a) is upper bounded by

Q(a) ≤ Q̂t(a) + Ût(a)

with high probability.

• The estimation depends on the number of times N(a) that item a

has been selected.

Small Nt(a): large Ût(a) (estimation more uncertain)

Large Nt(a): small Ût(a) (estimation more accurate)

• UCB algorithm: Select an arm that maximizes the Upper Confidence

Bound (UCB)

at = arg max
a

Q̂t(a)︸ ︷︷ ︸
Exploitation

+ Ût(a)︸ ︷︷ ︸
Exploration

.
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Combinatorial Multi-armed Bandit

• Action is combinatorial ⇒ generate a ranked list at each time step.

• Semi-bandit feedback ⇒ only outcomes of the played arms are

observed to the agent.

• Challenges

• Exponential number of actions ⇒ cannot be fully explored.
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Contextual Information

• A lot of available features:

• user profiles, search keywords, hyperlinks, images, tags, comments,

titles, etc.

• A solution to the cold-start problem in the recommender systems
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Dependent Click Model (DCM)

• models multiple clicks.

• Two sets of unknown parameters to be estimated:

• attraction probability: item-dependent parameters

• termination probability: position-dependent parameters

Figure 1: Dependent click model
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Problem Formulation

• A set of ground items E = {1, . . . , L} and a feasible action set

ΠK (E ).

• At each time step t,

• A set of contextual vectors is given {xi,t}i∈E (e.g., user profiles/

keywords).

• The learning agent selects an ordered list At = (at
1, . . . , a

t
K ) of K

distinct items
• The user checks the list of items one by one from top to bottom. For

each item a at position k,

• the user is attracted with probability w̄t(a) ∈ [0, 1].

• if attracted (the user clicks the item), the user will feel satisfied and

leave with probability v̄t(k).

• The feedback is a sequence of k binary click indicators (w′1, . . . ,w
′
K ).
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Problem Formulation

• The reward of action A is defined by

f (A, v ,w) = 1−
K∏

k=1

(1− v(k)w(ak)).

• The cumulative regret in n rounds

R(n) = E
[ n∑

t=1

(
f (A∗t , v̄t , w̄t)− f (At , v̄t , w̄t)

)]
,

where A∗t is the optimal list.
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Problem Formulation

• The reward is not revealed to the learning agent since the leaving

position is ambiguous, e.g.,

0100110000⇒
{

leave at the 6-th item with satisfaction,

finish the list and find nothing satisfied.
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Problem Formulation

• The attraction weight wt(a) satisfies the generalized linear

model (GLM)

w̄t(a) = E[wt(a)|Ht ] = µ(θ>∗ xt,a),

where

• {Ht}nt=1 represents the history up to time t,

• θ∗ is a fixed but unknown vector θ∗ ∈ Rd

• The inverse link function µ is chosen s.t. 0 ≤ µ(θ>∗ xt,a) ≤ 1. This

GLM admits a wider range of nonlinear distributions such as

Gaussian, binomial, Poisson, gamma distributions, etc. In particular,

when the feedback is binary or count variables, the logistic or Poisson

regression can be used.

• we adopt the same assumption as in [Katariya et al., 2016]1 that the

order π(v̄) of v̄ = (v̄(1), . . . , v̄(K )) is known to the agent.

1Sumeet Katariya et al. “DCM bandits: Learning to rank with multiple clicks”. In:

International Conference on Machine Learning. 2016, pp. 1215–1224.
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Algorithm

• For round t = 1, . . . , n

• Obtain context xt,a for all a ∈ E .

• By wt(a) = µ(θ>∗ xt,a), we obtain an estimate θ̂t−1 of θ∗, solved by

Maximum Likelihood Estimation (MLE). With high probability,

wt(a) ∈
[
µ(θ̂>t−1xt,a)− ρ(t − 1)‖xt,a‖V−1

t−1
, µ(θ̂>t−1xt,a) + ρ(t − 1)‖xt,a‖V−1

t−1

]
• Compute the Upper Confidence Bound (UCB) of each arm a ∈ E ,

Ut(a) = min{µ(θ̂>t−1xt,a) + ρ(t − 1)‖xt,a‖V−1
t−1
, 1}.

• Select action

At ← argmaxA∈ΠK (E)f (A, v̄t ,Ut).

• Play At and observe the last click position Ct , and the click sequence

wt(at
k), k ∈ [Ct ].

• Update Vt ← Vt−1 +
∑Ct

k=1 xt,atk x
>
t,at

k
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Algorithm

Lemma [Li et al., 2017]2

For any δ ∈ [1/n, 1), with probability at least 1− δ, for all 1 ≤ t ≤ n,

we have

‖θ̂t − θ∗‖Vt ≤
σ

cµ

√
d

2
log(1 + t/(λd)) + log(1/δ).

2Lihong Li, Yu Lu, and Dengyong Zhou. “Provable Optimal Algorithms for

Generalized Linear Contextual Bandits”. In: Proceedings of The 34rd International

Conference on Machine Learning (2017).
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Result

Theorem

For n ≥ 1, and the reward function

f (A, v ,w) = 1−∏K
k=1(1− v(k)w(ak)), the cumulative regret R(n)

has a bound of Õ(d
√
n)

R(n) ≤ 4dKpvkµσ

cµ

√
nK log

(
1 + n/(λd)

δ

)
log(1 + Kn/(λd)).

• independent of the size of the ground item set L.

• improves the previous regret bound in [Filippi et al., 2010]3 by a√
log(n) term.

3Sarah Filippi et al. “Parametric bandits: The generalized linear case”. In: Advances

in Neural Information Processing Systems. 2010, pp. 586–594.
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Proof (sketch)

• Reduce the problem to the cascading bandit problem

E[Rt |Ht ] = f (A∗t , v̄t , w̄t)− f (At , v̄t , w̄t)

≤
K∑

k=1

v̄t(k)w̄t(a
∗
k)−

K∑
k=1

v̄t(k)w̄t(at
k)

(by definition of A∗t and f )

=
K∑
i=1

(v̄t(i)− v̄t(i + 1))
i∑

k=1

(w̄t(a
∗
k)− w̄t(at

k)),

where v̄t(K + 1) = 0.
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Proof (sketch)

• Use the following Lemma to bound the cascade difference,

Lemma

Let t ≥ 1 and At = (at
1, ..., a

t
i ), i ∈ [K ], we have:

i∑
k=1

(µ(θ>∗ xt,a∗k )− µ(θ>∗ xt,at
k
)) ≤ 2

i∑
k=1

ρ(t − 1)‖xt,at
k
‖V−1

t−1
,

where ρ(t) =
kµσ
cµ

√
d
2 log(1 + t/(λd)) + log(1/δ).
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Proof (sketch)

• The norm term can be further bounded by

Lemma

If λ ≥ K , then

t∑
s=1

i∑
k=1

∥∥xs,as
k

∥∥2

V−1
t
≤ 2d log(1 +

Kt

λd
).
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Experiment: Synthetic Data
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(a) Cumulative regrets.
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Figure 2: Synthetic data, select K = 5 items out of L = 200 items, dimension

d = 100.
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Experiment: Real-world Data

0 1000 2000 3000 4000 5000

Time Step

0

20

40

60

80

100

120

C
um

ul
at

iv
e

P
se

ud
o-

re
gr

et

GL-CDCM

GL-CDCM (SGD)
LR

LR (SGD)
KL-DCM

(a) with only item features
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(b) with both item and user features

Figure 3: Yandex Dataset: select K = 10 items out of L = 100 items,

dimension d = 200.
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Conclusion

• Present a bandit algorithm for web page recommendation that

automatically balances the exploration and exploitation.

• Incorporate contextual information in DCM bandit.

• Prove a regret bound of Õ(d
√
n) for the algorithm.
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